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SYNOPSIS

A comparative study of step-by-step methods which are commonly used in

the numerict2. analyosi of the dynami,, rIsponse of structures is presented. The

method of saalysis A5 based on the general theory cf the calculus of difference

equations and the algebra of matrices. The available step-by-step techniques

discusned are cla-sified into three groupsa

1. Acteleration methods,

2. Difference equation mathods,

3. Numerical solutions of differential equations.

Ccmparisonr3 have been ma,le between the available techniques with respect to the

accuracy of a single step, propagation of errors after a length of time, limita-

tions Imposed by instability and lack of convergence, time cnnsumption, and self-

checking provisions of the procedures. The purpose of the work has been to

determine the range of 4plicability of the various techniques.

'4



COMTPARISON OF STEP-BY-STEEP .?aTRODS FCR AINALYZhI1N
DYNAMIC RESPONSE OF STRUCTUIRILS

I ViTRODUCTION

1.1 Summary

This d~ssertation is concerned with the analysis of step-by-step methods

commonly used in numerical solutions of the dynamic response of structures.

Rigorous solutions are not always possible for structures with non-linear charac-

teristics under dynamic loads such as wind, impact, blast, earthquake or vibratory

motions, particularly in the case of muVi-dogree-ofrfreed=m systcns with plastic

resistance or with a varying elastic behavior as a function of tirre. Consequently

a numerical approach is indispensable -for such conditions and step-by-step studies

of motion with respect to time are extremely useful.

The purpose of thIs dissertation is to study the accuracy and range of

applicability of various step-by-step techniques now available and frequently

used In problems of dynamic response of structures. These step-by-step procedures

may be classified for convenience of d:iscussion into three groups,. 1. Accelera-

tion methods; 2. Difference equation methods; and 3. Nuraerical solution of

differential equations. In the acceleration methods the displacement andt velocity

at the end of a time interval are each expressed in terms of the displacement and

velocity at the beginning of the time interval, together with the accelerations

which occur at the ends of the interval, a law of variation of the acceleration

within this time interval being assumed. The acceleration is in turn governed

by the differential equation of motion and the problem may then be solved by an

algebraic; solution of simultaneous equetione or by cut-and-try iteraticns.

The eecond group of methods involves the application of finite differ-

ence equations which are obtained from the given differential equationc of motion.



Displacement at each successive step during the metion can be derived from thm

displace ments previotisly obtained by means of finite difference equations. For

mUlti-degree-of-freedom structures the solution may be a~ccomplished by sooving

a set of lirear simultaneous equations or by inverting a m atrix.

The third group. of, method3 includes. conventional devices developecl by

-mathematicians for the numerical solution of various differential equations anid

wihiclh are quite gene ral ,in P-pplication. They m ay be adopte d'even in more compli-;

ctdprobleds than thos~e-involved In the equation of motion which we usually

-The analyse tbe characteristics 'of each of the available techniques, it

is0 best to obtain beforehand an alsiebraic equation ripresentizhg-c -of -the va-iu

-techniques. of step-.by-a ep procedures,. thent copre ft i~htergrus solu-

tion of-'the diff erentiial equation of motion and'investigaie its'pro agation ýof-,

errors. -This can- te 'done in one of. the" f ollowing ways. Firnt, it is possible t4)

*express the approximate'solutio'a in the fnrm of a finite difference equation in

terms of displacements and find its compl~ementary and particular solutions by means

of the calnulus of -finite' differ~nce. if the' approximate procedure is -readily

given in a finite diff erence form)- no work is necessary in transforming the.

original procedure into finite difference equations. Secondly., the'set of linear

equations used in the approximate technique may also. b6 -expressed in a matrix

form such that a column matrix consisting of displacement, velocity an~d accelera-

tion at the end of the time interval is equal to -the product of a square matrix

into a column matrix consisting of displacement., velocity arnd acceleration at the

beginning of the time interval. When the procoduee is successively carried out

a times, the square matrix multiplies itself to the nth power and shows the re-

latlon between the Initial and final conditions. The former way is more simple

as far as mathematics is concerned but reveala directly the dynamic respornse only

in displacement, while the latter, though involvinig more algebra, gives not only



the d.Lsplacement, but 'velocity and acceleration as well if desired.,

[The dynamic analysis of a structu~re is usually based on. tht following

assumptions:

.1. The mass of the structure may be represented by a number of separate

coucen trated masses supported by a flexible-and weightless framework,

2, The resistance-deflecticon relationship of the structure can be deter-

a1in'd bef orehand, over the whole rage. of action, and the t ime sitory of at splact -

mint or. external f orcesa is known.

~Without loss of generdlizatioki, lbe priesent analysis has b~een confined to

aa single- degree -of -f reedom' system. Neverthls h motoofmecmpite

multi-degree-of-freedom systems can be considered as -being- made up, of the motion

inseveral,. modes,- each; 'mde actibeg-as-8a e-egeef-feeom

, Generally speaking) acctracy Mayb attained if-the time interval eis

uuf~ety.:amall -while too large, ean itterval may pr.oduce,1:very misleading results.

However:, sinoe different degrees of accuracy can result-,from diffexent methods of

application, the choice of time interval depends upon the accuracy desire~d and ýthe

amount of work required'.-

'Acceleration-methods nieed. no ipecial-training for their applicaton s Inre

they are based oti fundamental concepts, bvt these methods aire always -handicapped

by the, criteria. of couvergence and stability., The c-on&~tant ac~celeration method~i)*

is -ob~jectionable because of its rapid divergence of amplitude.. Timoshenko~s

modified acceleration methad(l) gives better results than that of constant accel-

eration, yet the frequency error is stiil appreciable. It is, however, free from

stability difficulties and has nio enlarging or diminishing effect of the velocity

response. mewmark's linear acceleration method (2) has better agreemeat in

frequency, but overshoots a little in amplitude due to the enlarged velocity

response. Newmark's parabolic acceleration method(2) has even better agreement

*Numbers in pa~rentheses refer to itema in the Bibliography'.



inr frequency, but unfortunately its amplitude diverges exponentially: and it 1.s

therefere of less value for a long lapse of time in spite of its accuracy in t~he

first cyecle of~ vibration. Vewma~rk~s PSmethcd(31)(1 ) may be regarded as a genera-

lized acceleration method., introduring a riw parameter /3 in the displacement

equation so as to control the effect of~ acceleration. With 0-1/4, it is identical

with 'Vimosheiiko's modified method. With a-il/6, it is the same as the linear

acceleratio.n method. It corresponds to the. difference equation methoa adopted by.

Levy(5 when 0)in O tr tnd, that given-by Sal~vadori1(6) wha sr. 1/12. Et greAt

advantage o-f this geteralization Ista i emtsa ~veietco& of the

timeý tnite~rVal 'det~ermined bý the fovreo rtterioa~ during teopra~tion.

..Dif-f rende' 6qu~ti~on methods -ýalso hale brriteria for stabi .lit'r These

'Pro'cedureii are nott,ýself-vchecking. A, little -more t lia economy may be gainzed since

aomly the displacement- i s, ne ceasary for t he computation' a~nd,. the veloritty may tO

disregarded in each step ttbus -savin tim In calcala~tions. Asý stated before. the

diLferenc.e equations adopted by Levy and, Salvadori may be conesidered is identical1

to Newmarks a' -method when 6s0 and A8m 1,/12 respec-tively,,ex.cert-that- the'

intilcc'ndit~ions are, treated diffrerently. Hfoubol~t'sý method.M.()i said to. b:6 an

imp movement ovs-r Levy's method, aincd it employ a ubic curve of displacement for
the differenc~e equation, yet it Suffers from -#e convein c a'atrs~co h

."pI!'ude. and f rom. a large error in period. The comput'd a*wplitude of dh-: undamped

systeT as computed by this method will decay rapidly after a few cycles of' viLbra-

tion nvwen when. a small time interval is uved.

'The accuracy of the numerical solutions of differential equatiorA

deve1i'ped by Euler, Ruxage and Kutta (8)(9) Ito discussed in many books and papers.

The application of' these metbods to linear vibration problems is somewhat time-

consuming in comparison with the methods above mentioned particularly in multi-

degree-of-freedom systems. Runge-K--tuta's method has an advantage for general

applicability in that it is always stable and it has the proper criterion .for



critical damping in viscous damping conditions.

Comparisons of tvt~e amplitude ankd reriod wi-*th pseudo' or computed ampli-

tude and period in eac'h method of numerical solution are made to ±nvesti.ate the

effects of length of time interval, natural frequeancy of the structure and other

*parameters.- Additional discussion of~ these factors is presented in later chapters.



I1- GENERAL ME'HODS OF ANALYSIS

2.1 Calculus of Finite Difference Equations

Analysis may be made for each method by expressing the given differential

equation of motion, combined with the procedure of operation, into a difference

equation Then the properties of this difference equation represent the character-

istics of the corresponding numerical metbod. In the second group of available

techniques described, in the last chapter, finite difference equations are readily

formed from the differential-equatiou of motion by replacing the higher orders of

derivatives by central diff~rence patterna. In the first and third groups-of

available techniques more algebraic work is required to convert the equations of

motion into a difference equation. Howisver, the equations of operation prescrib-

ing the given motion can always be expressed in terms of displacements and veloci-.

tiea in a linear relation, and, can easily be put in a difference equation form.

In acceleration methods -he equations of operation may at first oontain some

acceleration terms but one can soon eliminate them since the final acceleration,

itself can be expressed in terms of displacement, velocity and initial, accelera-

tion. Thus if the equation of motion is given in the form

9+ 2r + W 9y + ~ t (2.1.

where p is the natural frequency of vibration and r the coefficient of viscous

damping in terms of p, it is possible to represent the numerical procedure by a

flaite difference equation in the form

or, in the case of the parabolic acceleration method or Houbo].t's method,

= 4 4 F(tp))
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The solutions of these differenca equations are

and. (A.X.5) Cj

respectively, where x×, x2 , and x3 are the roots of the equation

or 4,J ;e3 * 4l +J il =j X 1 (2.1.7)
corresponding to Eqs. (2.1.2) and (2.1.3),,and cl, 02, and c3 are constants

determined from the initial conditions.

If the roots x3 and x2 are conjugate complex roots, the, response of the

numerical procedure is periodic although there may exist errors in both amplitude

and frequency. One the other hand when all the x roots are real, the solution

becomes aperiodic and unstable. By 'stable' we mean that the response of the

•ufer;Lcal solution remains. periodic and without fluctuation-or rapid divergence in

amplitude. As far as tiwe period is concerned, the observation of these roots

serves therefore, as a criterion of stability. Dive~rence of amplitude may also be

regarded as. kind-of instability and it will be shown in later nhapters that-it is

due to-the presence of-a factor with an exponential power of time- which ocours in

the general equation of response. If the factor equals one, the amplitude ýrI
meither diverge nor converge and is therefore stable. When the factor is larger

than one, the amplitude diverges with a rate which depends on the maguitude of the

factor. Slow divergence is generally acceptable in some problems, it is determined

by the allowable error in amplitude and not by the criterion of stability.

Particular solutions of these difference equationc may be obtained by the

calculus of finite differences though sometimes thih &ay involve difficulties in

more complicated forcing functions, However, an approximation can generally be

made by expressing the forcing function in a power series or a Fourier expansion

which is always solvable in this kiud of finite lifference equations.

The finite difference equations (2.1.2) and (2.1.3) consist enltirel.y of



displacement terms and therefore the general solution shows 'rnly the rEsponse in

displaceient of the structure at the end of the time interval due to the displace-

ment and velocity at the beginning of the time iuterval and also due to the exterixr

forces if there are any. In order to bring out the response in velouity of the

structure, another Aet of difference equation containing all velocity terms must

be formed from the fundamental equations of the numerical solution, such as

(2;.1.8)

or ~ ~ ~ 219"l/ 01 . as" X #e 0.

Similarly, the finite difference equatiuna may also contain only accelera-.

tion terms in-the form of

°" •y• + €i + cx-, *,. = •Pr42+•F(•)+4F ¢t#.,.)# •,FcZ•. (2.1.11)

if the response in acceleration is required.

AlU the zesults of numeriuaA solutions are henceforth to be compared with

the exact sol.utiOn. In the present analysis the motion of a structure which is

assumed to be of elastic. behavior is prescribed by the well-known differential

equation (2.1.1) whose general solution is knowr to be

.Y =Pt( eorjep A B i$:it) (2.1,12)

where yp is the particular sojution, and A and B are constants determined from the

initial conditions.

For free vibration, F(t) = 0, •y• 0, and the equation of motion becomes

0z !. , (2.1.13)

The solution is

-/7-,T

0n1- (2 1.15)



For free vibration without damping, the equation of motion can fur°ther be

simplified to
y4-p•ywo (•,l.16) I

and Its solution is

yy.G fbs cos 'Ot (2.1.17)

and. 7='C - V (2.1.18)

•.,2 Algebra of Matrices

This is applicable to the first and third groups of methods provided that

thre displacement, velocity and acceleration at the end of any time interval can be

expressed in a linear for= in terms of the displacement, velocity, accalaration

and some other parameters at the beginning of the time in terval. For example,

w," = ,• * ÷ e . an a, (2.2.1)

a matrix form representing these linear simultaneous equations can be written as

",l _ L" 421 " a"oY (2.2.2)

K i L j~ 0j 0, or, in more abbreviated

[,] [A]y.]. (2•2-.3)

When the numerical solution is carried through n successive steps of equal time

duration, with the final displacement function of a previous time interval be-

coming the in.itial condition of a new time interval, the matrix [A] operates on

itseylf [r], [y so that

[>] :[A]"[o] ,.•



ir 1
The matrix [A]" can be expanded by means of the Cayley-Hamilton theorem and

Sylvester's theorem as soon as the characteristic roots are obtained.

The cfnaracteriatic roots of the matrix [A] not only gives the expansion
,., rAil. 'hut asin t,•hf-., nrlf Pr nr nf 4" Y P÷y• +'me P4 ÷4

differcnco method described in the preceding article. The presenae of a pair of

•onJugate complex characteriu',ic roots signifieb stability and periodic response

of the numerical solution while all real roots indicate that the response iE a-

periodic

The method may become very tedious in the case of forced vibrations since

the presence of more than two characteristic roots in the matrix will add too miuch

aigpbraic work to the simpli-fication process The method of analysis by finite

difference equatione ic preferrable in this case.
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III, ANALYSIS OF AVAILABLE TECHNIQUES

3,1 Acceleration Methods

3.1.1 Constant Acceleration Method

7The asic assumption of this methcd is that the acceleratian of the mass

in motion remaing unchanged throughout a small time interval and is equal in

direction and magnitude to the acceleration at The starting point of the concoern-

ing time interval. The essumption is a rough one, and provides a rapidbut in-

accurate rrocedure. The error in this method is so large that it is seidom used.

A slight modification and a little more -work improve the results considerably

The advantage of speed of operation cannot componsate for-the loss ± accuracy.

Lpt us consider first a single mass in free vibration without damping,

Then from elementary mechanics we obtain the following expressions:

}•÷, - ¢, ); h(3 i.i.l)
=.

Y4•, -- y, + #¢ ÷)

where h denotes the time interval.

Now the differential, equation of motion for a body in free vibration

without daming is

+ (2.1.16)

from which the relatior

Y1 (3.1.1 3)Yn = -A(,Al3

is obtasined. Substitlating in Eqs. (3.1.1.1) and (3.1.1.2), we get

and these h/7i of e k. d . ot n es f e re

From these relations of displacement tund velocity, one gets a finite difference



equation in terms of displacements correeponding to the computed results from the

constant acceleration method,.

4, -y (6

The solution of this finite difference equation, together with Eq.

(3.1.1.), yields the general equation for the displacement predicted by the

approximate solution.

r(1.1.1.7)

where - uv-. O .( 1

Comparing this with Eq. (2.1.17) of the exact solution, it is obviol.'s that when

the time interval h is very small, this approximate method approaches the exact

solutiou as a limit. Since the time interval is not zero, there is an-error in

the procedure. We split the resulting error into two parts, one ts the error in

frequency or period) the other is in sm~litude. The phase angle n4 should bo

equal to pt if the solution is exact. In other-words, the exact value of u

should be pt/n or ph. Hence we obtain a relationship between the pseudo period

of the numerical solution and the true period of the exact solution, i.e.7- = o

The Crequency hae an error of • percent for ph 0.5 and of 10 percent for ph

The error in amplitude is objectionably large since the computed dis-

placement is subjected to a magnifying factor (,+ #-j- t)f which diverges

rapidly with the number of steps of operations n. This source of error is dominant

although there also exist some other errors in the coefficients of yo and Yo.

The coefficient of yosbecomes (aq r is d i

ard varies as a funct~ion oi' n and ph. Vae coefficient of y0 'becomes

instead of 1//p, which a1so showi a rapid divergence of etoplitue.e. Fig. I



I
Illustrates the rapid divergence of the envelope of amplitude for a single moving

mass subject to y0=O and ýro=p.

The criterion of stability shows that ph should be less than 4 Any

.alue oi ph greater than 4 yields aperiodic respcnse of displacement and velocity.

- No crý.terion of convergence exists for this method since one operation is

suffIicient for each step since no repetition or trial necessary,

For free vibration with viscous damping, the analysis is more complicated

since it involves one more parameter r, the damping factor of the motion. The

difference equation now becomes

2(1' '~)YT + 0(irp}(I*'~ 0 (3 2 -1.10)

and its solilt+.cj is h

y .

where 1AZ. l

Trhe ratio of pseudo period to true period becomes

7" "V

Comparison of 9m=litudes may be made f:om Eqs. (3 1.1.11) and (2.•l.,) Figs. 2

5ad 3 shows the comparisons of period and amplitude for different damping factor

r,

Two kinds of comparison in amplitude are made for all techniques des-

cribed in this thesis. The first one deals with the magnitude of the envelope

of vibration at pt = 1, regardless of the magnifying effect of the sine term in

the general expression. In other words, this is a comparison of the exponelitial

factor vhlcb multiplies the solution, The purpose of this comparison is to

demonstrate the rate of divergence or convergence and then to judge its applica-

bility. This ratio varies exponentially with pt, and •herefore the amplitude

ratio at any instai: t of time may be found by its axponential relntion with the



ratio at pt I

Another comparison deals with the peak amplitudes ½n the first cyr:le of

vibration due to an initial velocity Yo - p- The first peak amplitude oucurs at

tions due to the error 'u period which therefore playB an important role in tLic

pseudo peak amplitudes. This krnd of comparison may give a better picttere both of

the actual. oscillatory motion and of the pseudo motion derived from the approxi-

mate techniques.

The criterion for stability of the constant acceleration methcd is

expressed by the following equatioa.

*Thie sho-we that when ,4 ph> (4V~~ -t4 the computed displa~uem~t of'

motlon is aperiodic which I not true for r less than 1. For the critinal damp-

ing condition, i.e. r 1, ph ýhould be rcae equal to or greater than 0.9282 in

.order to procure an aperiodic response.

Tte constant accelrat'on method is too crude in accuracy and therefore

not much used in practice. It is or-Ly accurate to the second order of h and orrot

may arise from the third. power of the time interval since

3.1.2 Timoshenko's Modified Acce~eration Method

This Is an Iracroved method obtained from the last one by modifying the

aoceleration of the mov.ng body. The acceleration here is assumed Constý-.,t

throughout the tiwe interval and equal to the average of .!•s initial and final

values. The tlementary aquttions of motion, are therefore

A ~ iY, ~(3 .1.2.1)
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It should be noted that the above equations may not be consistent. When ;om••ned

with the differential equation of free vibration without damping, these equations

yield

iL ' = . *//Z (i 2.3)

The difference equation in terms of displacement now becomes

-.,=[2 • y +/Y,,., = 0 (31.2.5.)

and its solution is

hi

YMo / (3.1,236)

whereh

S(3 1.2.)

This approximate solution has no error in amplltudr• neither the initial

d~isp~lacement nor the initial velocity prod~uces errors which would affect the

mTeditude er displacement or velocity nhereafte• computed. (See o ig. 4) The

only error •ri~irng !.n this =mthcd Is due to the difference of phase-angles or

the d~iscrepancy in period or frequency which can be expressed by the equation

and its plotiotu n Fig.s .

Another adeantage or this methoe is that no criterion for stability need

be imp.osed. The ilargtn of the time interval can be chosen torrespondir. to the

accuracys aesred. Unfortunately, the error in .eriod is so large that even a

time interval n' ojrat t/6 of the natural period will reruo., an w percent error

in frequency.

it vdc cous aamping iperi r fr ieqed, one an obtein the following equations

___ 

(--29
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of motLo0,

(H, A _e :,, (,+: .. + (3.1.2 1)

and, the difference equation of disrlacement

-~ )/ t (/1.I.1t

with itl solution

a 9 (5.1.2.3.3)
where

The criterion of t3tability may be expr'essed ds _/ /: C , This

pxpresslnic is ind.;pendent of the natural frequency and time interval, i.e. there

is no value of ph which affects the stability of res;onse. The stability criterion

is ide:ntical with the criterion of critical damping.

By comparing Eq. (5.1,2.13) with the exact solution, Eq. (2.1 14), one

can observe-that both periud and amplitude errors exist in the approximate soli-

tion. The ratios of pseudo to actual values of periods and amplitudes are as

follows:

(A )tpý&(3,1.2 16)

Curvea are plotted for these equations in Figs 5 and 6.

3,1., NJev.ar'_s Linear aod FaraboL1c" Acceleration Methcd;

There methcds are aed on the assumption that the variation of the

acceleration of the mass in motion is, respectively, linear or parabolic. The
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velocity ia determined from a definite integral of acceleration over the range of

time, and the displacement is, in turn, an integral of the velocity. The elemen-

tary equations of motion are therefore consistent.

The linear acceleration metbod is first considered The equations of

motion are
*' " *"÷ + (5 C.1 5.1)

andw =Y' y, 0 ;. g1,# (3.1.3:2)

In case of free vibration without damping), - . The

equatione can be simplified to the form

, (*/- * rrY1. (3.1.5.3)

from wbich the, difference equation

is derived. The ,3olution of this differ-nc.-equation is-

where C: ".Vcen 7r4 (3.137)
""iilly y" =" -Y p /-+s ' (+ y*.G.

Making comparisons with the exact solution as before, the error in the

apyroximate solution consists of two pats: t"e error in period and the error in

amplitude. The error in period is expressed by the ratio

_• , ph A. 1

The amplitude error in this case is constant for a given time interval, it does

not vary with the lapse of time and ib solely a function of the initial velocity

of the maes if th. Trass st.art, from rest no amplitude errur will occutr Hence

the amplitude error depends on the proportion of initial displacement and velocity,
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The error will hp large for a motion due to a small initial displacement and large

initial velocity; and will be small for a motion due to a small initial velocity,

Fig. 7 shows the resDoonse of a single mass due to yo - Oj and o = p.

The criterion of stability is found to be ph<t/T2. Any value of ph I
greater than A/I2 will result in aperiodic response by the approximate solution.

In the case of free vibration with damping, the difference equatior of

the procedure becomes(-i) - (y,, + = 0• (3...3 ._o)

The solution is

where . t

- (3.-.3.12)

The criterion for stability is now
/7" for r1l (3.1,3 13)

Characteristics of the pseudo period and pseudo amplitude are shown on

Figs. 8 and 9t

The parabolic acceleration method differs from the above method in assum-

ing that the al:celeration has a parabolic variation; thus ,,= I, kh o * i

The procedure of operation is similar to the linear acceleration method except

that one mcre initial condition is required to start with. That is, one needs

two previously known steps to carry out a new step. The procedure may be started

in one of the folluwing ways-

2. Use linear acceleration for the starting interval.

2 Usa linear acceleration for a starting interval which is only half

as long as the regular Interval, then got a speuial parabolic acceleration in-

terval halC as long as the rpgular interval and proceed..
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The equations of motion from elementary mechanics Are

Z. "Y.. ÷ (-Y., 8Z./÷(3.1.3 14)

.Y~ly,. y.., + y,.., * , a 3/)3

The d'fferetce equaticn corresponding to the above equations is

The solution of this equation can be expressed in the form of Eq. (2,1.5) wh'aich:

ran also be written as

where Ay B and C are constants determined from initial conditions, •, R and . are

functions of ph. The value of p is smal-. and terms containing it are of less Im-

portance than other terms of the expression. R is dominant since it is greater

than I and of exponential power n as steps of ti= proceed. Therefore, the -ro-

cedure is of a diverge*..t nature and is not desirable over a long lapse of time

Furthermore, the criterion of stability Ph < .5738 liw.its the applicability of

long time intervals. Although the parabolic acceleration method is more accurate'

than the linear one aD faa- as the first cycle of oscillation is concerned, the

errors in amplitude enlarge vapidly from the second cycle onvard. (See Fig. 10-)

Figs, 11 and 12 show how T./T and A./A vary with ph, neglecting the first term of

Eq, (3-1-3.17).

An attempt has been made to Improve the accuracy of the linear accelera-

tion method and to lessen the work of computation of the parabolic acceleration

method by applying linear and parabolic accelerations alternately in successive

steps, i.e., using linear acceleration in the first step. parabolic in the second,

linear in the third, parabolic in the fourth, and so on. The resu1t, as one may

expect., turns out to be intermediate between the two methods. The edfference

equation for the dtsplacements at an even number of steps in the caee of free
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vibration with no damring is ,rritten as

09 ý(/ ,- ', - (

and its solution is

" * ... " -

V -. Sgz 16 9* 16 96p9 .9P'4b /i(

where Ad.? 1 A 2! -P296/.- t. p"i- 37,, '
2304* C304,t9h't388ep4A'4 p'h 93, £pe

•- '3o4 26' (5,1.3.20)

and (5.41.18A.21)

The values of Ts/T and As/A are plotted againpt ph in Figs. 11 and 12.

It is evident that the propagation of error is divergent. The criterion of stabi-

lity of this alternate linear-parabolic acceleration method for free vibration

without damping is found to be ph = 1.6171 which is quite unfavorable for long

time intervals.

3.1.4 N;e-mark' s AMethod.

This is a generalization of first degree acceleration methods obtained by

tntroducing a parameter • into the elementary equations of kinematics. Thus

1 (3. '".4 n)

it is obvious here that this is equivalent to Timoshenko's modified

vethcd when • - 1/4 and to Newmark's linear acceleration method -.en 1 - 1/6,

Tn the case of free vibraticn without damping, the difference equation

of displarements appears as

y,.- (e - Yn'= .(3 iA.•.)
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The general solution of the difference equation becomes

Ap~Y a A (3.1.4- 4)

Ar P1 60, 6,¢i' 614 +AP
By comparing the pseudo period with the true period, it can be seen that

the rat1c, T/T may be expressed in a series form of

Consequently, for t = 1/12, the ratio T,/6 T W7ill be closest to unity for any
arbitrary value of ph. This means that 5 1/12 will give the best result in

period.

The computed amplitude is neither divergent tor convergent as tie Mpro-

greases, although some error is involved in the response to an initial velocity.

Eq. (3.i..) showa that the term containing yo does not contair any error in

amplitude, but the one-with is amplified by the factor

which is only dependent on • and ph and is free from influence of the proceedI.ng

time. Fig. 13 illustrates the variatiou of the velocity amplification factor

, '- e*-)p'" •with ph for different values of'

The criterion for stability is
-/ *' ,'" < (3.1.4,7)

When " L 1/4, this condition is always fulfilled fox any value of ph aLd therefore

no stability criterion need be imposed. With 1i/4, no ph can possibly .atisfy

the criterion. With p<j./4, the larger 0, the longer the t1 me interval which car.

be used. For 0 = 0, the critical ph iF equal to 2.

The criterion for cunvergence i1

ph a (at F 08)

which shows that a l~ruger permits R snaller applicuble time interval, For .5 0
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the procedure immediately converges regardless of the time interval uved.

For probleme o4 free vibration with viscous demping, the difference equa-

tion of the procedure may be vTittcn as

It6 solution is

, P%. (3.1.4.1o)

where - ,I- r'.Yt-A!p'4'
phPr('2-rzA

(3 -1

Now the error in period i13 not oaly dependent on I and ph, but also on r.

Again, if the ratio T,/T is exressed in a series form as

it will be found that '+( " 2 .

is the best value as far as period is concerned.

The error in amplitude is dominated by the exponential factor multiqiying

the whole expression in Eq. (,.14.10) particularly after a long sequence of time.

Neglecting the coefficient. which combine with yo and ýo in the expression, one

may com;are amplitudes by taking the ratio

For best agreement in amplitude, --3

The criterion for stability is

ps, <

for r(l. Except when • 1/i, the numerical procedure does not present an agree-

ment an the criterion of critical damping, greater discrepancy usually occurs for
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larger time intervals. Critical damping may occur it the numerical procedure even

for low values of r if too long a time interval is taken.

T1e criterion for convergence is

r~oh4 g lhl < (.3.1.4. 16)

There is one more restriction of this meth•d in the viscous damping pro.
Sh

blem. A degenerate case of the difference equation will occur if N'

is equai to +a or -2. Under this condition the method is not workable However,

when - pA /
I+

we sea that the convergence criterion is violated. On the other h.and, when
r-phj. Ar~T -/"

the spring constant is negative.

The $-method is also applicable to forced vibrations as represented by

Eq. (2.1.1) with good accuracy. The error due to the presence of a forcing

function F(t) may be seen by comparison ,th the exact particu-lar solution. Now,

let 7p be the particular solution of the given differential equation of motion,

Eq. (2.1.1), and let yp be the correepcnding eolutiot obtained by the numerical

procedure. Analysie is made for an undamped system of single mais subjcct to an

applied force 1'(t) as follows;

Given the equation of motion

/+"y F i)

the exact solution is

wherre ' is the particular solution.

The corresponding difference equation when usi.ng the 8-method is found

tc be I - (4/t(.4

'yI

A



and~ its snlution is

2dos A e•SA " " ÷ (3.1.4 2C)

where y is the particular solution of the difference equat±on and

A= Y.'Yeo
pp

+, +

numerical solution will approach the exact solutio. The following comparisons

are made for different kind of forcing functions:

(a) The forcing function is a polynomial in time, i.e,

then a
i • .... O _pi

"* (a,. '"4 (1,.... '

1 [ ( 1 2-1 P a* -S-64 3,-S k a ,

.YP.

4. L- kg " a 9- 7, ?d '4

---. 7,-6, z-• S <, _ 4 kg at . ,'7.• /, • St5

+
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there 1  -/

Oo I) ,"*(,'1 fw/)p64'

L .4 f tPj. j MIA&L _ Jhi .. /it_

/1 8/40.000 ,4oo~o4o .Jz92OA'-1c02a,ý 1)l

From tle above we see that the numerical solution is exact for ajthird

degree polynomial at any valueof •, and for a fifth degree polynumial when 9 =

(b) The forcins runctwor, i trigonometric, .,e,

* FatQ= h -'-•'.* i#'sh (•.l!.14..24.);A
then

and A Bu2 Cost!

YpPi 2 5'sn'b (~ .26)

ewfs ab -g a,'3,rah )hU I/, So Inh

(c) Exponential forcing functions, as

and 4V a(-.,9

In all cases above, when h-, 0, yp-• •, and therefore the numerical solu-

tion approaches the exact solution as a limit,

The P-•etbod way also be applied to other form of motion than the one re-

presented by Eq, (2.!.1). Consider the motion prescribed by the linear differen-

tial equation

- (3.1.4.30)
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the exact solution of which is known to be
S-• € t+ (3-1.4.31)

where c is a constant determied, from the initial conditions. Applying the 0--

uIld its geteral solution is

re beet value of 0 for this case is 1/6.

3.2 Methods of Finite Differences

3.22. Ley's. Method.

A method proposed by Levy replaces the second derivative Y in the equa-

*tion of motion by finite differences, -;F(iff., -)6 Z/. For a free

vibration with no damping prescribed by the jiven, differential 6quation

S(2,..16)

by su"stituting A ' ÷ -2"y- one obtains

whichis obviously identical with Newmark's generalized acceleration tethod for PSO,

except that the treatment of initial velocity is different. The general solution

of Eq. (3.2 1) is

(•.2.l,3)

and A and B are constants determined from initial conditions, with ph < 2 as

statility criterion. There is no difficulty in finding A which is always equal

to v, but trniuble arises in the determination o.' B which depends on the
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interpretation of the initial velocity, or in other words, on the way in which Yl

is obtained from the known values of yo and . Y When ýo = 0, one may assume that

yj = y- then solve simultaneously with Eq. (3.2.1.1) -o get y.. Otherwise, if

If one begins with Newmark's f-method of 0 n 0 for the first ctep in order

to obtain yI, then

ard. the result will be the same as Newmark's A-method for A 0, i.e.,

, 7P g : P/'" -2-"(3.2.1.5)

If, taking the formula of elementary mechanics

We obtain ,, _ (,.e.1.7)

The result is, of course, iess accurate.

Onltaking Ai: ,,'÷Ye for the first half time interval

and getting y1 from the difference equation of the half time interval

,'8 1 
(3-2.'1.8)

This result iz generally better than that of Eq. (3.2.1.7).

On assuming y . = 0 and solving for y.,

- (32.1.9)
/

This is only true when , - . and is only used when

is unecertain.

In viscous damping problems, by replacing by -, ).,/) and

7:.lb y ,g( - ys+In the differential erjuatiorL a~ motion,

Y' +0 ep y a 0.(-1:}

one may obtain the difference equati.on

- ,- ,•, -( . -- ,-,,,Z + -,- . --- -.-. .-
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which it! tdential to Eq. (3.1.4.9) for P 0. The result will be the same an that

of .Neack v generalized acceleration method for 8 0 with exception of- the treat-

ment of initial velocity The aiscussion is therefore not repeated hereb

.: cumpdri~uu uf pseuio and true periods and amplitudes of ttis Mettod,

See Figs. 14 and 15.

3.2.2 SalvaAdri's Method.

This is an application nf a, procedure due to Fox vibration problems. The

secon. d.erivativP ' is replaced by the first two terms Qf the central difference

expansion.,

where, A, and 4 are the secotd and fourth central differences of y

= -of ,oly, - - X, #

Operating then with (I/ f/ on each term of the equa tion

Drrpp4MS the sixth-difference terms, the equation may be simplified :to

- m Y'6 (3.2.2.2)

whlch is obviously the same as Newnark'e generalized acceleration method for

S= ]./12. (Sie Eq. (3.1.4-.3).) The solution is in the form

where t7 -

Tle uoonztarts A and B are determined from the initial ccnditions. For free vibra-

tion., A is always equal to Yo, while B depends on the way in which Yi is obtained

from the i•ritial velocity '

If the rroocdure is ýý:trted with Newmark1s P-method for P , 1/12 i-ntil Yl



is obtained), that is if

the result will be the saw as that given by Newmark2s A-•ethod for P u 1/12.

If we take the formula of elementary mechanics

.Y, C '0 '0h),,(3.2.2.7)

then 8 (3,2.2.8)

OAh

which involves moe arror than the previous result. Howevea, the accuracy of the

velocity response can be improved if the initial velocity is properly treated.

In the case of forced vibrations with a formcing function Y(t), the

difference equation of Stivadori's method beoomes

which is again the sam as Newmaark's method for 0 - 1/12. (See Eq. 3.14.-19).)

This method ia accurate to the order of 0 provided that the moti.on starts from

rest. If the motion begins with a finite velocity, the treatment of the initial

velocity for the difference equation determines the accuracy. The discussion of

this method is included in Iewvomrk's method in previous and later chApters, and

is not restated here.

Salvadori treats the daped motion problem in the same way an Levy does

by, transforming the damped motion equation Into an algebraic equation by the

substitution of central averaged differences for the derivatives. The difference

equation thus formed is

(- (3.2.2.10)

which is the eame as Eq. (3.2.1.9). There is a difference in.procedure when

applie& to a multi-degres-of-freedom stricture but it does not affect the nature

of the errors.
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3.2.3 Eoubolt's Method -

Houbolt's method is based cn the assumption of a cubic curve for the dis-

placemntf of the moving body, considering that four successive ordinates can be

passed through by v. cubuc curve. With this assumption thc foilcwiag f

equations for the final derivative may be obtained

- ",V 4-Ym.* -w YJ)2; = (2z,- #y. Sb.y., - 2y,.,) •.3•
y,, iI/, -Igy•• + ,lt - .X,,j)(3.2.3•.2)

Tho derivatives at ýhe third of the four or&inates are sometimes of use

and are as f ol'lows:
/

z(= A * JA, - YY/ /t., ) (3.2.3.4)

For free vibration without damping, substitute Eq (3.2.-,1) into the

d.f!rentiaJl equation of motion

The following difference equation is obtained.

Its solution is

A C/ X/ CIX t'Y" c 3 4(.25

where x.), X2) and x3 are the roots of the equation

( 1,0h6)x• - JX" ' - / X(8.1'7)

It can be shown by tho theory of equations that this equation contains one real

root and twD conjugate complex roots for any value of' ph. Therefore the solution

has always an oscillating nature aDd no criterion of stability gcveruz the choice

of the time interval. although the amplitude may be damped out very rapidly as

time proceeds (see Fig. 18). Eq. (3.2.7.6) may also be written in the form

where a, b, and e are ll functions of' ph. Here A, B and C are constants deter-

mhucl from the initial conditicons The first term of the equation is negligibly
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the numerical values of a, b and c for various ph, Fig. 19 shows the rat 4 o of

pseudo period to true period Ta/T, and Fig. 20 shows the ratio of amplitudes A./A.

The d~sadvantages of this method are two-fold. First, it needs one more

initial condition to start with. Although this can be found by taking account of

the initial acceleration it also involves effort to trace the back differences

L:._luding the simultaneous solution of equations Eqs. (3.2.3.a) to (3,2.3.4). If

the initial conditions are awkwardly treated, e.g. by making the issumption that

the fictitious displacements at t * -h and t -2h are zero, the error introduced

by these erroneous assumptions would be greater than that of the method itself.

The step-by-step evaluation of succeeding displacements cannot proceed In a

straightforward. manner until three initial displacements have been established.

Secondly, the amplitude of a slightly damped system decreases so rapidly even for

a time interval of about oie-sixth of the natural period, that the amplitude is

reduped 50 percent after one and one-ha.f cyclis of vibration. (See Fig. 18.)

Finer time intervals and thus more computational effort must be used to reduce

the damping effect of the procedure.

For free vibration with viscous damping, the difference equation of this

method becomes

+ )91/7y~ iL (4 0 pP/)yi,.z(0"'JrPAA)X#3 0O (3.2.3.9)

The solution is It the form of Eq. (3.2.3.8) with a, b, and c functions

of r and ph. The criterion for stability becomes

Values of a, b and c are listed in Table 3.2.3.1 for various ph. The ratios of

7,/T and A./A are also plotted against ph in Figs. 19 and 20. It can be seen

that the error in period increass w*.th time interval h and the damrPing factor r.

Thre amplitude ratio is less thnn I for syitens with slight damping and greater

t-an 2 for system with higher dam-ing factor r.
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Table 3.2-3. Values of a, b and o of EqIL.2 .8

pa b c

r-. 0 0.5 1.5587 o.0318 0,9208
1.0 0.9024 ox.og8l o,0 Eo6
1.5 o.6724 o.1461 0,94o
2.0 0.5494 0.1733 o.6047
2.5 0.4706 O.,868 0.'532
3.0 o.4149 0,1922 0.4740

' &, 0.5 1,4176 0. -O74 Q.8808
1.0 0.8185 0.1963 0.7357
1.5 0.6108 0.11959 c.6213
2.0 0.4987 0.1941 0.5350
.5 0.4262 0-1882 0.4637
3.0 0.3746 o.182o 0.4165

r - C.20 0.5 1.2436 0.3766 0.8312
1.0 0.73o4 02787 0.6836
1.5 o.5528 o.P371 o,5694
2.0- o0.4547 0.2122 o.4871
2.5 0,3900 0.1942 o4258
3.0 0.3435 0.1799 0.5785

0,72 0.5 I.CO18 o.563,9 0.7848
1,0 0.6349 o.0354 o.6439
1.5 04960 0.2739 0o5307
2.0 o.4142 0.2,02 o.4519
2.5 oM584 0.2019 0.3945
3.0 0.3173 0.1815 0.3507

3.3 Numerical Solution of Differential Es~uations

3.3.1 Euler's •.nd Modified Euler Method

Euler's approximation is based on the a~aumption that if y is expressed

as a function of x by the equation = X ) , the increment in y corre-j

sponding to an increment, & xj in x is given approximately by the equation

yf = (' , M• , the value of £(xy) being that at the beginning of

the interval Ax. Applied to the problem of free vibration, with damping,

governed by the d=f'arential equation yf 2 rpy -t -X , the formulas for rew

displacement and velocity at end of a time interval are found to be

Y(",
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and (3-3.1-2)

When this prccedure ia carried on In a step-by-step manner, usit.g the displacement

and velocity found frcm the previous time interval as the initial condition of the

new time interval, the I e i 4------

yi- z(/-rA4 )yf,7 (/-z 'h')y•,., "•.3.1.3)
TLm solution of this equation is

V, ('V! doe" +

where(~l )

and- 03-3.1 (,..6)

The error is of tne second order and the amplitude damps out gradually

wvi.L time. There is no limiting ;riterion for stability in case of free vibration

with no damping. Any time interval will obtain oscillatory retponse. For free

vibrations with damping, the criterion for critical damping is the same in the

numerical solution as in exact solution, Lie. aperiodic motion at critical damping

occur= when r * 1.

Figsý 21 and 22 show the errors in period. and amplitude at pt I for

various ph.

The modified method of Euler takes the true average value of dy/dx ovrer

an interval instead of dy/dix at the beginniug of the interval for the equation

/xY) This method gives a more aczurate value of the incremstt of

y due to incremtnt of x than Euler's original method and the error is of third

order of (6x)3. Thic method may be represented by the formulaz(3,3-1-7)

wher ao

When applied to the prcblem of free vibration with damping, the displacement 3nd



velocity at the end cf an tnterval now become

14 = p. 4,, ),Y,7-# (/
),,# W Z'- 2 ) r + :'•- p h ;,, (23.o. o.v

Ti - may be representec. oy the difference equation

the solution of which is found to be

where (•.3,l.l)

Again, there is no limiting criterion for stability in the case of free

vibration without damping, but the amplitude of vibration seems to damp out

gradua3ly if the range ic carried too far. In damred vibration problems, the

numerical method has the same criterion for critical damping as the exact sclutioM.

Figa. 23 and 24 show the errors in period and amplitude for various ph

of this method.

3.32 Rungs,_ Heun and Kutta's Third Order Rule

Various formulas have been devised for numerical integration of the

differential equation " by Runge, Heun and Kutta. These methode,

accurate to the third order of A x, are sumarized as follows;

1. Runge's Original Formula-

wbere
(; :, iX+a, V * 4).,d

"' I, X, .



2. Beun;

Y (3.3.2.2)

where ~

/ # = -0 A, X,/ -0 -*) -,d

•.KlttaIli. Third Order Rule:,, I e' + 'w ">

where

All these formulas when applied to free vibrations with or without damp-

ing yield the same results. When applied to forced vibrations, their results have

alight discrepancies but all contain errors of the fourth =rAkr. It is hard to

say which of the above formulas is best because the agreement with the exact solu-

tion depends on the type of forcing function, damping coefficient and time interval

in a very complicated za•er.

Considering the free vibration problem with damping, the follweing

discussion is coMMOn to all three of the methods above mentioned.

The displacement and velocity at end of a time interval are found to be

These equaions, if applied successively by using the final value of previous

step as the initial value of the new step, lead to the difference equation

(,2' -. 6)
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The solution of this efuation is

vhere

pAF/-rp (4' -4h'- p ' V 7i (3'3. -..f

(3-3.2.,9)

As before, these methods have no limiting criteria of time interval for

stability in problems of free vibration without damping, nor there is anW die-

crepancy In the. dampig coefficient r at the point of critical dau ingý

J.•., Kutta's Fourth Order Rules

The formulas with error of order (6x)ý derived by Kutta are:

1. Kutta's Simpson's Rule

where a X

4 M'* / o ( Jx, y, j< )td ;

2. Kutts's Three-eighitRule

INo difference £n reoults between th•ese two rules occurs when applied to

free vibration problems. For forced vibrations the reeults will differ slightly

out both are of the same order of err'or, The agreement with the exact solution

,e,
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varies with r, ph and t.

The displacement and veiccity at end of a time interval in the problem

of free vibration with damping are found by either of the two rules to be

* ' t i'il''' " ,I •

a/ 5.i -/.rp6 + •<i-•.,,)p•'- j(¢•-,V,'ba'37p'4y.,
*. [/..rp4.j.~(#-4ivD)Pt'# [COf.-zrspJ?•'4 #•,,.IZ4/l~r~p4 ' (3,33.)

This may be put in difference equation form for the step-by-step method, as follows

# /-pA#(p•.A•.•.Ao j /-')p~4

~'j&~rJp'6' 7 Pp'/71d.~ib'4'~yi.,- ~(3-3-3.5)

* ~The solution is fouand to be

v here R ehz A4x- 1

Like all other methods of this kind, the fourth order rules have no

limiting criteria for stability. Any time interval can be used accordi±ng to the

accuracy desired. When the system reaches its critical damping, i.e.,, r = I, the

numerical soluti.on becomes aperiodic. A difficulty associated with the mpthMd is

that the amplitude wil]. gradually clamp itself out oven in the case of an undcaed

system. and the method is therefore not desirable for a long period of time,



IV. DISCUSSION

4.1 Accurary

It Is ususall convenient to compare tne accuracy of various methods by

the order of time interval h involved in the error produced. The final displace-

ment over a time range computed by numerical methods can be expanded into a

rolynomial of ph azd then compared term by term with a standard power serieo

,zerived from the exsct solution. The error occurring in each step of the step-by-

step methcd may thus be obaerved, estecially as to the order of ph involved.

Considering first the case of free vibration, with damping, which is governed by

the differential equation
"_i + ' Y rx'P 0(2.1.3)

its solution -

may be expressed in a power series for a time interval h

The following is a collection of equations which show the accuracy of

different numerical methods:

Constaut acceleration method:

Newmark' s P-method:

-+ ( ,•r'-,?Jr -'for, '- , - i'D P 6'*.*,J,
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For ý = 1/4 (Timoshenko's modifiod method.)

4 : b-o jp~A~f6''' jý ` . fApli...] (4.1.3)

For P - 1/6 (Linear accoleratioL metbcd.)

p [s•t1,p ",•,'i'/,' -,)p.1h I# .7,.

For 0 1//2 (Salvadori's method.)

T

For 0 .,O (Levy's metliod.)

Parabolic acceleration method:

loo ' A'O foW 0 .4 (14 r

Houbolt's method.

# [,-ph..t/,-4(,-V,'t,6'1. •(0-.,r)p •,6 ... "]hy,¢ (4.'.8)

Eulerle method,

a,, , ,, ,,..b/y,, # 1

Modi-fied Euler Method;

" (p- #x (; (3.3.1.6)

Eunge, Heun and Kutta's third order rule,

&)Y rp (-r)P , (3.3.2.4)

Kutta's method:

-., 4,.• +,,',- ýp,- ",j (ý-2" ) (,.33

From the above listings of equations for vezous methcds, one may observe

that,

l1 The constant acceleration, linear acceleration and parabolic accel-

eration methods have, re2spectively, an accuracy of the order of h h3 a=d h in

both displacement and %eloity. Te ac:aracy of J;;.wmark's 8-method depends on

- -
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the choice of B.
2. Levv's end Houbolt's methods have, respectively, an accuracy of the

order of h2 and h3 in both displacement and velocity responses.

3. Salvadori's method is of order h5 only in displacement response ana

only for undamped systems. If r and are not zero, thii method is oaly of h2

accuracy unless a good interpretation of ýo is made.

4. Euleu's metnod is of the first order; modiLled Euler method,-seoona

order; Funge and HeRnr, third order; and Kuttals Simpson's rule or three-eigbth

rule, fourth ordur generally.

5. In some special cases the accuracy of the above methods may be pro-

noted one more order. These will be listed in Chapter 5.

In the case of forced vibrations, the error which enters the particular

seolution also governs the accliracy of the method since it determines the constants

for the initial conditions. As before, Newmark'c linear acceleration method is of

third order accuracy for any system vith or without damping. For an undamped

system starting at rest, Salvadori's method has an accuracy of fifth order. Euler'4

modified Euler, Runge-Heun and Kutta's methods are still of first, cecond, third

and fourth order respectively.

The comparison of errors by polynomials is only good for ph less than 1,

I ude the error would otherwise be dominated by the higher powers of ph vhich

wo•ild vitiate the analysis. Nevertheless, usual practice indicates that a large

time interval, say from 1/4 to 1/2 of the natural period of vibration (phl.5708

to 3.14!6) is highly desirable in rapid and rough estimations. The effect of

large tine intervals is shown in the graphs (f Appetdix 3.

4.2, P•opaation of Errors

The precsaing article concexms the accuracy of displacement response of

varloue metbods in one single step of r.pration, tne error indicated in the



expanded polynomial being compared with a c¢oion initial cundition. But if step.

by-step evaluations are set up, with a common initial condition for the first step,

the initial cond.ition of the second step will contain error which Ls different in

'.-'rouo "mthcd• Af tr R •h•-n of -_*. Ai 1P1.!t• •hA •rr r agates in

dilferent ways, divergent or convergent, accumulating or self-eliminating, as a

function of timej length of time Intervnl, natural frequency and damping factor.

Shown in previous chapters are the equations for Yn and in Appendix 3

are graphs of T5 /T and As/A for various methods. These may serve for an estimate

of the propagation of errors

Errors are of two furdamental types, error in period and error in ampli.

rude. The error in period or in frequency is solely due to the discrepancy in

phase angle which is dArectly proportional to the lapse of time. The error in

azplitude, on the other hand, chiefly depending on the factor Rn in the equations

of y a is an exponential fun¢Vilu of time. From the equations for y. derived and

listed in Chapter 3, it is evident that the condition for no error in period is

ph • • and that for no divergent error in amplitude is Rerph 1 1. All pseudo

periods and pseudo amplitudes have been compared with true periods and true ampli-

iudes iu the preceding chapter. The ratio.of periods is given by the relation

A ( 4.2.1

atd the amplitudes by A!/Ao There are two ways of comparing the amplitudes. The

first one concerns the ordinate of the envelope which prescribes the periodic

response, while the second way takes account of the peak amplitude in the first

cycle of vibration, subject to a certain iuitial velocity.

In the first way of comparison, cri= finds that

A: (4-2.2)

neglecting the magnifyin, effect cf initial velocLty in some cases.

Since the ratio of amplitudes is -ot constant with time, it is reasonable
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to compare the methods at a certain ftesignated time, say, at t I l/p, i.e. pt -- 1.

Then

e./ (4°2.3)

Note that the ratio AA at ntml here does not mean the comrarison made
8*

wiLl Lhe pseudo ampl2tude actually computed which is not only affected by the

factor R, but also uisually by tne change ir. velocity response. The velocity re-

sponse depends on ph an stated in Art. 3 1.4, and sometimes on the initial
diseo.acement as in Eq. (3.L.5.18) However, when the time interval is not close

to the criteriou of btability, this error in amplitude due to initial velocity

response is of a constant mature, doing much lesa harm than the exponential

factor R after a considerable lapse of time, and is not taken into consideration.

Therefore the ratio A./A for the envelopes of the periodic curves is still useful

for Judging the convergence and divergence of errors.

Newmark's 0-method for all values of • from 0 to 1/4, together with

Timoshenko's modified, Newmark's linear acceler&.tion, Levy's and Salvadori's

methods, Lave A./A - I in free vibration of an undamped system. Constant and

parabolic acceleration metaods are the ones which have d±vergeng amplitudes while

the others, including Houbolt's, Euler's, modified Euler, Runges'a, Heum's and

Kutta's methods, have convergent amplitude although the rapidity of divergehce or

uonvergoace is different.

The presence of damping may add complication to the analybis. Plottings

of A5 /A at pt - I shown in Appendix 3 are self-explanatory. The relation between

AS/A at any time and AB/A at pt = 1 is shown iu Fig. 29.

In the second method of comparison, peak amplitudes in the first cycle

rif vibration due to an innitial velocity yO a :p are compared and sbown in Appendix

3. This con.parison may be of more interest in practical prohlems of vibratiou

since it gives actual amplitudus of periodic motion, The magnifying effect on r

the sine term :of +ýe general equation I's generally takcn into coneider.'tion except
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in the parabolic acceleration method and Houbolt's method where the magnification

factor depends also on the treatment of initial conditions. Note that the magni-

tude of' the peak amplitude does not depend only on the value of R, but also on the

error in period as well.

Error in perind is, as a rule, constant for a given ph. Generally

speaking, the ratio T /T increases or decreases with the broadening of time inter-

val. T/T> I indicates a larger yueuao period or A retardation of phase angle

and vice versa.

4.•3 S labil;Ity and Convergence

The applicability of different available techniques places some limita-

tions on the time interval used, not only as regards accuracy, but also as regards

stability and convergence. All acceleration methods have a limiting criterion of

ccvergence because of their iterative procedure. All acceleration methods,

except Tin~shenko's modified method, also heve a limitiug criterion of stability

beyond which aperiodic rerponse uwill occur. This has been discussed in Art. 3.1.4

(See Eq. (3.1.4.7) and (3.l.4.8).) Larger values of' A provide a wider range of

time Interval for stability, but a shorter range for convergence. On the other

haud, when 5 - 0, freedom from the convergence criterion is obtained at the loss

of range for stability. The presence of damping will also affect both criteria;

the greater the damping factor r, the shorter the range of time interval available.

The difference equation methods have generally no limiting criterion

for convergence because of the natue of tho procedure. However, a criterion for

stability still governs those techniques which have been discussed in previous

chapturE. Levý' and Stlvadori's methods have the same criterion for stability

an that of Newmark's P-method when A = 0 and f = i/a2 respoctively. The

Houbolt method criterion for stability has been given in Eq. (3.2.3.10).

The iethocis of numerical Integratlon described in Art 3.5 have the



advuntage of avoiding limIing criteria both of stability and coznvergence. The

choice of time interval may therefore be made according to the accuracy deeirei.

It is not advisable to use any time interval greater than lI/p, that is) ph • i,

powers of ph will dominate the solution.

The criterion of critical damping in the exact solution is r 1) while

only some of the numerical solutions have the same criterion. Those which have

proper criterion of critical damping are: Timoshenako's modified method or Newmaze

a-method for 0 U 1/4, EuLerls method, modified Euler method, Rurge's, Heun's and

Kutta's methods, In most of-other methods critical damping occurs even when r1i.

The linear acceleration method, Salvadori's method, Levy's method and Newmark'e

0-method (with the exception of 1 a 1/4) are all of this group. The criterion of

the conitant, acceleration method may be higher or lover than the actual criterion,

depending ot the product of the natural frequency of the structure amd the time

interval used. Houbolt's method generally exhibits periodic response for all

values of r and ph except in some cases when r is greater than 0.94 and ph very

small. Fit. 30 illustrates the criteria of critical damping for various techni-

ques. The region above a curve is that of aperiodic response, uhile the region

under a curve is that of 'eriodic response.

4.4 Procedures of •peration

Acceleration methods require an iterative procedure starting from an

assumed value of acceleration and arriving at a derived acceleration by use of

the equations of motionk until a close agreement is obtained between the assumed

and derived values. With a proper choice of time interval, three of four trials

for esh interval of time will usually be sufficient to reach convergence in a

multi-degree-of-freedom system. The time consumed in completing a step by al

clectric dezX computer is about, nine minutes for a two-degree-of-freedom syste•n



45,

and about twenty minutes-for a five-iegree-of-freedom one after the equations are

set up and a routine form is made The result of each step is seef.checking except

in the special case of e * 0 in Newmark's P-method. Both displacement and velocity

tay nerva ag a supplementary help for giving a clearer picture cf motion and for

checking

Difference equation methods aro faster because displacements are directly

obtaincd from the difference equations and no extra work to obtain velocities is

needed. Bowever, they suffer from the absence of self-checking procedures unless

an additional device is provided. For problems of multi-degree-af.freedom systems,

Houbolt su~gestec1 a recurrence-matrix solution in which the equations of motion

are expre83ed ia a recurrence matrix equation and solved by inverting the matrix.

Balvadori expressed the ecuations of motion for every three adjacent messes so

that each equation contains only three unknowns and may be solved by relaxation,

trial and error, or successive approximations. The evaluation of displacements

with six significant figures for a five-degree-of-freedom took approximately ten

minutes after the computations had been standardized. (6)

Funge's and Kutta s methods are the most time-consuming as far as the

use of an electric desk computing machine is concerned. It takes more than thirty

minutes to complete a step by Kutta's fourth order formumla for a two-degree-of-

freedom system. Furthermore, since there is no self-checking of calculations)

mistaken may easily be introduced into the computations due to the intricate work

of cross-substitution in the procedure



V CONCLUSIONS

The general resulta of thin study are tabulated on the next page (Table

5,1) in which the advantagee and disadvantages of each of the available techniques

are listed. Graphs showing the errors in period and amplitude for a range of time

interval from 0 to about half of the natural period in various methods are given

at the and of this dissertation, It is therefore possible to choose a suitable

technique for a specific problem according to the accuracy and amoumt of work re.

'quired. In general, the larger the time interval, the cruder the results. Values

of ph leas then I always give reliable results for all techniques, but variations

will be great when phil, and theme grapA may be found useful for judgement when

ueing large intervals.

In ordinary problems of vibratory motion, Newmark's A-method Is most

valuable because of its flexibility in application. The choice of time interval

may be made for the desired rate of convergence and accuracy by adjustent of the

- arameter. The linear acceleration method, a special case of the R-methcd for

O-l/6, is most consistent in degree of error when the motion is that of forced

vibration with dampingo, with initial displacement and velocity. Timoshenko's

method is best applied to an undamped system when the response in amplitume is

important. The constant acceleration methodl and Euler's method are not aaviuable

owing to their inaccuracy. If the masses in motion are not damped and have no

initial velouity, Salvidori's method is most rapid and accurate. For rapid and

less accurate work, Levy's method may prove useful, but care should be token in

the treatment of inftial velocity. Runge and Kutta's methods aOe noted for their

accuracy and generality in application, having no restrictions with respect to

stability and convergence, but they are handicpopped by the tediouv procelure which

is not generally dPsirable for use as en orainary engineering design techniiue:
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Table .l-- Summarized Result of Aimlysis

Order of Accuracy
Item Techniques Displace- Velocity Forced Amplitude

No. ment VYlra- when rwO
Response Response tion

2. Constant Acceleration 2nd 2nd divergent

2. Timo. Mod. Accel. 2nd 2nd 2nd ronstant
Newmark P a 1/4 (3rd when (3rd when (3rd wher

rIo) ru !/2) rao)

3. Linear Acceleration 3rd 3rd 3rd constant
Newmark 0 a 1/6 (4th when (4th when

r = 1/2) r . 0)

4.- Paraborlc Acceleration 4th 4th 4th divergent

5. Newmark's A-method Depends on A constant

6. Levy 2na 2nd 2nd constant
Newmark • a 0 (3rd when (3rd when (3rd when

ruo) r.- /2) r o)

7. Salvadori 2nd 2nd 2nd constant
Newmark e a 1/12 (5th *Imn (3rd when (5th when

r a O) r 1/2) r- O)

8. Rubolt 3rd 3rd 3rd cony.
(4th when (4th when
ru1/2) r o)

9, Euler let lat 1st cony.
(2nd when
r 0)

10. Moi~f ied Euler 2•nd 2nd 2ndl conY.
(,rd when
r M 0)

11. Runge, Heun 3rd 3rd 3rd cony.
(4th when
r=0)

12, Kutta 4th Order 4th 4th 4th cony.
(5th when
r 0)



Table 5.1 Su S 4xzal Result ofAnaayIe (Concluded)

Item ' 't'rio -of CritericE Rf Soif- Time
No. Stability Convergeince Check- Consump-

Ing tion

1. q. (3.1-1.13) no no less

2. no yes < yes fair

3. Eq. (3.1.3.-13) I,/ yes fair

4. Ph(<J3-377%8 Ph<2.8281427 yes more
for r 0 for r 0

5. Eq 3l41)Eq. (3l1.1) yes fair

6. ph < ,('-') no no less

8. Eq,. (3.2.3-10) no no Tair

9. no no ,no less

10. no no no fair

11 no no no more

12. no no no more



APP~FD 1. - - NOMENCLATURL

The letter symbols and notations used in this thesis are defined as

follovs except otherwise noted.

A 0 amplitude of the moving mass.

As - pseudo amplitude obtained by numerical method.

A, B, C, a constants determined from initial conditions.

a, b, c & coeffIcients used in equations.

e - 2.710.... base of 'natural' logarithmi

F - forcing function.

h a time intervals

k - constants.

n n number of time intervals taken in the step-by-step evaluation, or
subscript to designate displacement function at a particular ties,
as yo, yn or

p a circular frequency of natural vibration.

r a factor of viscous damping in term of p.

'T - natural period of a general system, in general T = ./P.

Ts a pseudo peaiod of vibration obtained by numerical method.

t a time.

tn a time corresponding to end of nth time interval,

x - variable in general equations.

y - displacement of mass

y first derivative of displacement with respect to tim, i.e. velocity
of mass.

- second derivative of displacement with respect to time, i.e. accelera,
tion of tags.

exact solution of differential equation.

y P particuler solution of difference equation for numerical m3thods.
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APP!ZIX 1.. - NOIMMClTJM (Concluded)

ýP a oxact particular soluticn of differOLtial equation.

M coefficient measuring proportion of acceleration at end of interval in
determination of displacement.

phase angle at end of the first time interval obtained by numerical
solution.
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